

## ネイピア数の定義(極限値の存在)

ネイピア数 $^1$  や自然対数の底と呼ばれる無理数  $e=2.71828182845904523536 \cdots$  は、極限値

$$e := \lim_{h \to 0} (1+h)^{\frac{1}{h}} \tag{1}$$

として定義されるのであった.本稿では,この定義の正当性を確認する.すなわち,次を証明 する.

定理. 極限值

$$\lim_{h \to 0} (1+h)^{\frac{1}{h}}$$

が存在する.

定理の証明のために、いくつか補題を用意する.以下では、

関数 
$$f(x) = (1+x)^{\frac{1}{x}}$$
, 数列  $a_n = \left(1 + \frac{1}{n}\right)^n$ 

とする.

補題 1. 数列  $a_n$  がある値に収束すると仮定すると、関数 f(x) は、 $x\to 0$  で同じ値に収束する². 証明. 数列  $a_n$  が、ある実数  $\alpha$  に収束すると仮定する.

$$g(x) = f\left(\frac{1}{x}\right) = \left(1 + \frac{1}{x}\right)^x$$

とおくと,  $f(x)=g\left(\frac{1}{x}\right)$  であり,  $x\to\pm 0$  のとき,  $\frac{1}{x}\to\pm \infty$  なので,  $\lim_{x\to 0}f(x)=\alpha$  を示すためには,

$$\lim_{x \to \infty} g(x) = \alpha$$
 かつ,  $\lim_{x \to -\infty} g(x) = \alpha$ 

を示せば良い.まずは, $\lim_{x\to\infty}g(x)=\alpha$  を示す.x>0 を仮定して良い.x に対して,ある自然数  $n_x$  が存在して, $n_x\leq x< n_x+1$  をみたす.このとき, $\frac{1}{n_x+1}<\frac{1}{x}\leq \frac{1}{n_x}$  であるので,次が成り立つ.

$$\left(1 + \frac{1}{n_x + 1}\right)^{n_x} < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{n_x}\right)^{n_x + 1}$$

ここで,  $x \to \infty$  のとき,  $n_x \to \infty$  であり, 数列  $a_n$  が  $\alpha$  に収束するという仮定から,

$$\lim_{n_x \to \infty} \left( 1 + \frac{1}{n_x + 1} \right)^{n_x} = \lim_{n_x \to \infty} \left( 1 + \frac{1}{n_x + 1} \right)^{n_x + 1} \left( 1 + \frac{1}{n_x + 1} \right)^{-1} = \alpha,$$

$$\lim_{n_x \to \infty} \left( 1 + \frac{1}{n_x} \right)^{n_x + 1} = \lim_{n_x \to \infty} \left( 1 + \frac{1}{n_x} \right)^{n_x} \left( 1 + \frac{1}{n_x} \right) = \alpha$$

が成り立つので、はさみうちの原理から、 $\lim_{x\to\infty} g(x) = \alpha$  が成り立つ、次に、 $\lim_{x\to\infty} g(x)$  は、

$$\lim_{x \to -\infty} g(x) = \lim_{x \to \infty} g(-x) = \lim_{x \to \infty} \left( 1 + \frac{1}{-x} \right)^{-x} = \lim_{x \to \infty} \left( 1 - \frac{1}{x} \right)^{-x}$$

であり,

$$\left(1-\frac{1}{x}\right)^{-x} = \left(\frac{x}{x-1}\right)^x = \left(\frac{x-1}{x-1} + \frac{1}{x-1}\right)^x = \left(1+\frac{1}{x-1}\right)^x = \left(1+\frac{1}{x-1}\right)^{x-1} \left(1+\frac{1}{x-1}\right)$$
と計算できるので、上の結果を用いて、 $\lim_{x\to-\infty} q(x) = \alpha$  が従う.

<sup>&</sup>lt;sup>1</sup>スコットランドの数学者 John Napier に由来する.

 $<sup>^2</sup>$ 数列の極限と関数の極限の違いには注意しなければならない.これらの詳しい関係については,関数の極限と数列の極限の関係 https://gleamath.com/lim-of-funcs-and-seqs を参照.

**補題 2.** 任意の自然数 n について, $a_n < 3$  である. すなわち,数列  $a_n$  は上に有界である. 証明.二項定理を用いて, $a_n$  は次のように計算できる.

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} = \sum_{k=0}^{n} {}_{n}C_{k} \left(\frac{1}{n}\right)^{k}$$

$$= 1 + \sum_{k=1}^{n} {}_{n}C_{k} \left(\frac{1}{n}\right)^{k}$$

$$= 1 + \sum_{k=1}^{n} \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} \left(\frac{1}{n}\right)^{k}$$

$$= 1 + \sum_{k=1}^{n} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)$$
(2)

ここで、 $i=1,2,\cdots,k-1$  に対して、 $\left(1-\frac{i}{n}\right)<1$  であることと、任意の自然数 n に対して、 $n!\geq 2^{n-1}$  であること³に注意し、等比数列の和の公式を思い出すと、 $a_n$  はさらに、

$$a_n \le 1 + \sum_{k=1}^n \frac{1}{k!} \le 1 + \sum_{k=1}^n \frac{1}{2^{k-1}} = 1 + \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 1 + 2\left\{1 - \left(\frac{1}{2}\right)^n\right\} = 3 - \frac{1}{2^{n-1}} < 3$$

と評価できる. よって主張が従う.

補題 3. 任意の自然数 n について, $a_n < a_{n+1}$  である.すなわち,数列  $a_n$  は単調増加である. 証明.上の (2) 式と同様に, $a_{n+1}$  は,

$$a_{n+1} = 1 + \sum_{k=1}^{n+1} \frac{1}{k!} \left( 1 - \frac{1}{n+1} \right) \left( 1 - \frac{2}{n+1} \right) \cdots \left( 1 - \frac{k-1}{n+1} \right)$$

と計算でき、さらにこれは、 $i=1,2,\cdots,k-1$  に対して、 $0<\left(1-\frac{i}{n}\right)<\left(1-\frac{i}{n+1}\right)$  であることに注意すると、

$$a_{n+1} > 1 + \sum_{k=1}^{n} \frac{1}{k!} \left( 1 - \frac{1}{n+1} \right) \left( 1 - \frac{2}{n+1} \right) \cdots \left( 1 - \frac{k-1}{n+1} \right)$$
$$> 1 + \sum_{k=1}^{n} \frac{1}{k!} \left( 1 - \frac{1}{n} \right) \left( 1 - \frac{2}{n} \right) \cdots \left( 1 - \frac{k-1}{n} \right)$$

と評価できる. よって主張が従う.

最後に、補題1,2,3を用いて、定理を証明する.

定理の証明. 補題 2, 3 から, $a_n$  は上に有界な単調増加数列である.よって,有界単調数列の収束性 $^4$  から,数列  $a_n$  はある値に収束する.このとき,補題 1 から, $x \to 0$  で関数 f(x) は収束する.すなわち,極限値  $\lim_{h\to 0} (1+h)^{\frac{1}{h}}$  が存在する.

補足. 定理を証明するために、数列  $a_n$  を考えるというかなり回りくどい議論を行ったが、それは、ネイピア数 e を関数 f(x) の  $x\to 0$  での極限値として定義しているからである. はじめから、e を数列  $a_n$  の極限値として定義していれば、補題 1 は不要である. 実際、大学の微積分学ではそのように定義されることが多い.

<sup>3</sup>数学的帰納法で証明できる.

<sup>&</sup>lt;sup>4</sup>https://gleamath.com/bounded-monotone-sequence-convergence