

表現される関手(Hom関手)

C を圏 1 とする。C の対象 A,B に対して,A から B への射 $A \to B$ 全体の集合を $\mathrm{Hom}_C(A,B)$ で表す。圏 C の逆転圏を C^op で表す。集合全体のなす圏を Set で表す。次のようにして,圏 C から圏 Set への 2 つの関手が定まる。

命題. Cを圏とし、AをCの対象とする.

• C の対象 X に対し, $h_A(X) = \operatorname{Hom}_C(X, A)$ とおき,C の射 $f: X \to Y$ に対し,

$$h_A(f): h_A(Y) = \operatorname{Hom}_C(Y, A) \to h_A(X) = \operatorname{Hom}_C(X, A) \; ; \; g \mapsto g \circ f$$

とおく. このとき, 反変関手 $h_A: C^{op} \to \mathbf{Set}$ が定まる.

• C の対象 X に対し, $h^A(X) = \operatorname{Hom}_C(A, X)$ とおき,C の射 $f: X \to Y$ に対し,

$$h^A(f): h^A(X) = \operatorname{Hom}_C(A, X) \to h^A(Y) = \operatorname{Hom}_C(A, Y) ; g \mapsto f \circ g$$

とおく、このとき、共変関手 $h^A: C \to \mathbf{Set}$ が定まる.

証明. \bullet h_A が反変関手であることを示すには、次の3つが成り立つことを示せば良い。

- 1. C の射 $f: X \to Y$ に対して、写像(**Set** の射) $h_A(f): h_A(Y) \to h_A(X)$ が定まる.
- 2. A の恒等射 $1_A:A\to A$ に対して、 $h_A(1_A)$ は、 $h_A(A)$ の恒等射 $1_{h_A(A)}:h_A(A)\to h_A(A)$ である.
- 3. $f: X \to Y, h: Y \to Z$ に対して、反変性 $h_A(h \circ f) = h_A(f) \circ h_A(h)$ が成り立つ、これらは次のように示される、
 - $1. h_A$ の定義から明らかである.
 - 2. $h_A(A) = \text{Hom}_C(A, A)$ である. 任意の $g \in h_A(A)$ に対して、 h_A の定義から、

$$h_A(1_A): h_A(A) \to h_A(A); g \mapsto g \circ 1_A = g$$

が成り立つ. よって, $h_A(1_A) = 1_{h_A(A)}$ である.

3. $f: X \to Y, h: Y \to Z$ と、任意の $g \in h_A(A)$ に対して、

$$(h_A(f) \circ h_A(h))(g) = h_A(f)(g \circ h) = g \circ h \circ f = h_A(h \circ f)(g)$$

が成り立つ. よって, $h_A(h \circ f) = h_A(f) \circ h_A(h)$ である.

- h^A が共変関手であることを示すには、次の3つが成り立つことを示せば良い。
 - 1. C の射 $f: X \to Y$ に対して,写像(**Set** の射) $h^A(f): h^A(X) \to h^A(Y)$ が定まる.
 - 2. A の恒等射 $1_A: A \to A$ に対して, $h^A(1_A)$ は, $h^A(A)$ の恒等射 $1_{h^A(A)}: h^A(A) \to h^A(A)$ である.
 - 3. $f: X \to Y, h: Y \to Z$ に対して、共変性 $h^A(h \circ f) = h^A(h) \circ h^A(f)$ が成り立つ.

これらの証明は、上とほとんど同じなので省略する.

定義、Cを圏、AをCの対象とする、上の命題で定まる2つの関手

$$h_A: C^{\mathrm{op}} \to \mathbf{Set}$$
 , $h^A: C \to \mathbf{Set}$

e, Aによって表現される関手という.

¹局所的に小さい圏すなわち、Cの対象 A, B に対して、 $Hom_C(A, B)$ が集合となる圏