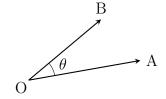


ベクトルの内積

定義. $\overrightarrow{0}$ でない 2 つのベクトル \overrightarrow{a} , \overrightarrow{b} に対して、始点を 1 点 O に合わせたとき、 \overrightarrow{a} , \overrightarrow{b} の終点をそれぞれ A, B とする. このとき、 $\angle AOB = \theta$ $(0^{\circ} \le \theta \le 180^{\circ})$ を \overrightarrow{a} , \overrightarrow{b} のなす角という.



定義. $\overrightarrow{0}$ でない 2 つのベクトル \overrightarrow{a} , \overrightarrow{b} のなす角が θ であるとする. このとき,

$$|\overrightarrow{a}||\overrightarrow{b}|\cos\theta$$

を \overrightarrow{a} と \overrightarrow{b} の内積といい, \overrightarrow{a} · \overrightarrow{b} と表す.

定義. 任意のベクトルと $\overrightarrow{0}$ の内積は0と定義する. すなわち, $\overrightarrow{a} \cdot \overrightarrow{0} = \overrightarrow{0} \cdot \overrightarrow{a} = 0$ と定める.

注意. ベクトルの内積は、その定義から(ベクトルではなく)実数であることに注意する.

内積の図形的な意味を考える. $\overrightarrow{0}$ でない 2 つのベクトル $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$ の内積は,

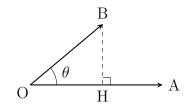
$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}|\cos\theta = \text{OA} \cdot \text{OB}\cos\theta$$

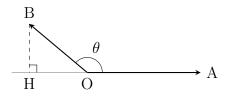
であった. ここで, 点 B から, 直線 OA に垂線を下ろし, その交点を H とすると, \pm OH = OB $\cos\theta$ が成り立つ. よって,

$$\overrightarrow{a} \cdot \overrightarrow{b} = OA \cdot (\pm OH)$$

がしたがう.以上から、(すぐ後に定義する正射影ベクトルという言葉を用いると、)内積 \overrightarrow{a} ・ \overrightarrow{b} は、

 \overrightarrow{a} と, \overrightarrow{b} の \overrightarrow{a} への正射影ベクトルの符号付き長さの積と考えられる.





定義. 上のように作った,ベクトル \overrightarrow{OH} のことを, \overrightarrow{b} の直線 OA 上への正射影や, \overrightarrow{b} の \overrightarrow{d} への正射影ベクトルなどという.

定義からほとんど明らかであるが、内積の性質についてまとめておく.

命題. $\overrightarrow{0}$ でない 2 つのベクトル \overrightarrow{a} , \overrightarrow{b} について, 次が成り立つ.

- \overrightarrow{a} と \overrightarrow{b} が平行 $\iff \overrightarrow{a} \cdot \overrightarrow{b} = \pm |\overrightarrow{a}| |\overrightarrow{b}|$
- \overrightarrow{a} と \overrightarrow{b} が垂直 $\iff \overrightarrow{a} \cdot \overrightarrow{b} = 0$

証明. \overrightarrow{a} と \overrightarrow{b} のなす角を θ とする.

- \overrightarrow{a} と \overrightarrow{b} が平行であると仮定する.同じ向きなら, $\cos\theta = \cos 0^\circ = 1$ なので, $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}|$ が成り立ち,反対向きなら, $\cos\theta = \cos 180^\circ = -1$ なので, $\overrightarrow{a} \cdot \overrightarrow{b} = -|\overrightarrow{a}||\overrightarrow{b}|$ が成り立つ.逆もほとんど同様に示される.
- \overrightarrow{a} と \overrightarrow{b} が垂直であると仮定する. $\cos\theta = \cos 90^\circ = 0$ なので, $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ が従う. 逆も 同様である.

内積と成分

定理. 2つのベクトル $\overrightarrow{a} = (a_1, a_2)$, $\overrightarrow{b} = (b_1, b_2)$ に対して、次が成り立つ.

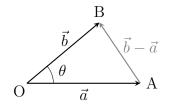
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2$$

証明. まず, $\overrightarrow{0}=(0,0)$ なので, \overrightarrow{a} , \overrightarrow{b} のどちらかが, $\overrightarrow{0}$ であるときは, 明らかである. $\overrightarrow{a} \neq \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$ とする. 右図のように

$$\overrightarrow{a} = \overrightarrow{OA}$$
 , $\overrightarrow{b} = \overrightarrow{OB}$

となるように, 点 A, B をとると,

$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$



が成り立つ.

△AOB に対して、余弦定理を適用することで、等式

$$AB^{2} = OA^{2} + OB^{2} - 2OA \cdot OB \cos \theta$$
$$|\overrightarrow{b} - \overrightarrow{a}|^{2} = |\overrightarrow{a}|^{2} + |\overrightarrow{b}|^{2} - 2|\overrightarrow{a}||\overrightarrow{b}| \cos \theta$$

を得る. ここで、ベクトルの成分表示と大きさの公式、 $|\overrightarrow{a}|=\sqrt{a_1^2+a_2^2}$ と、ベクトルの成分表 示の差の公式, $\overrightarrow{b}-\overrightarrow{d}=(b_1-a_1,b_2-a_2)$ に注意すると,上の等式は,

$$(b_1 - a_1)^2 + (b_2 - a_2)^2 = a_1^2 + a_2^2 + b_1^2 + b_2^2 - 2|\overrightarrow{a}||\overrightarrow{b}|\cos\theta$$

$$|\overrightarrow{a}||\overrightarrow{b}|\cos\theta = a_1b_1 + a_2b_2$$

と計算できる. 内積の定義から結果が従う.

〔交換法則〕

 $\bullet \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$ $\bullet \overrightarrow{a} \cdot (\overrightarrow{b} \pm \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} \pm \overrightarrow{a} \cdot \overrightarrow{c}$

〔分配法則〕

• $(k\overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (k\overrightarrow{b}) = k(\overrightarrow{a} \cdot \overrightarrow{b})$

 $(k \in \mathbb{R})$

証明. 交換法則は、内積の定義から明らかである.

 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} の成分表示をそれぞれ, (a_1,a_2) , (b_1,b_2) , (c_1,c_2) とする. $\overrightarrow{b}\pm\overrightarrow{c}=(b_1\pm c_1,b_2\pm c_2)$ なので.

$$\overrightarrow{a} \cdot (\overrightarrow{b} \pm \overrightarrow{c}) = a_1(b_1 \pm c_1) + a_2(b_2 \pm c_2)$$

$$= a_1b_1 + a_2b_2 \pm (a_1c_1 + a_2c_2) = \overrightarrow{a} \cdot \overrightarrow{b} \pm \overrightarrow{a} \cdot \overrightarrow{c}$$

が成り立つ.

3つめの主張については、どの内積の値も、 $ka_1b_1 + ka_2b_2$ であることから従う.

最後に、これまでの結果をまとめておく.

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta = a_1 b_1 + a_2 b_2 \quad , \quad \cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|} = \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}}$$