

三角比の性質

三角比の相互関係

 $0^{\circ} \leq \theta \leq 180^{\circ}$ である θ の三角比について、次が成り立つ.

(i)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $(\theta \neq 90^{\circ})$

(ii)
$$\sin^2 \theta + \cos^2 \theta = 1$$

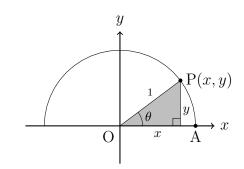
(iii)
$$1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$$
 $(\theta \neq 90^\circ)$

証明. 三角比の定義を思い出そう. 右の図のように, $0^{\circ} < \theta < 180^{\circ}$ である θ に対して,

$$\sin \theta = y$$
 , $\cos \theta = x$, $\tan \theta = \frac{y}{x}$

と定めるのであった. 定義から,

$$\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$$



が成り立つ. よって等式(i)を得た.

次に、色付きの直角三角形において、三平方の定理から、 $y^2+x^2=1$ が成り立つ. この式と、三角比の定義から、 $\sin^2\theta+\cos^2\theta=1$ がしたがう. よって等式 (ii) を得た.

最後に、等式よって等式 (ii) の両辺を $\cos^2\theta$ ($\theta \neq 90^\circ$) で割ることにより、

$$\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$$
$$\tan^2 \theta + 1 = \frac{1}{\cos^2 \theta}$$

となり,よって等式(iii)を得る.

注意. $0^{\circ} \le \theta \le 90^{\circ}$ に対して, $\sin \theta$, $\cos \theta$, $\tan \theta$ のうち, 1 つの値がわかっていれば,上の相互関係を用いて,残りの 2 つの三角比の値を求める事ができる.これは, 1 つの三角比がわかっていれば,対応する直角三角形が決まるので,当たり前のことである.

- $\sin \theta = \alpha$ とする. このとき、相互関係 (ii) から、 $\cos \theta = \sqrt{1 \alpha^2}$ を得る. (θ の範囲から、 $\cos \theta$ が一つに決まることに注意する.) さらに、相互関係 (i) から、 $\tan \theta = \frac{\alpha}{\sqrt{1 \alpha^2}}$ を得る.
- $\cos\theta=\beta$ とする. このとき、相互関係 (ii) から、 $\sin\theta=\sqrt{1-\beta^2}$ を得る. さらに、相互関係 (i) から、 $\tan\theta=\frac{\sqrt{1-\beta^2}}{\beta}$ を得る.
- $\tan\theta=\gamma$ とする.このとき,相互関係 (iii) から, $\cos\theta=\frac{1}{\sqrt{1+\gamma^2}}$ を得る.さらに,相互関係 (i) から, $\sin\theta=\frac{\gamma}{\sqrt{1+\gamma^2}}$ を得る.

 $90^{\circ} - \theta$, $90^{\circ} + \theta$, $180^{\circ} - \theta$ の三角比

次が成り立つ. ただし, $\tan \varphi$ については, $\varphi \neq 90^{\circ}$ とする.

(i)
$$90^{\circ} - \theta$$

(ii)
$$90^{\circ} - \theta$$

•
$$\sin(90^{\circ} - \theta) = \cos\theta$$

•
$$\sin(90^{\circ} + \theta) = \cos\theta$$

•
$$\sin(180^{\circ} - \theta) = \sin \theta$$

(iii) $90^{\circ} - \theta$

•
$$\cos(90^{\circ} - \theta) = \sin \theta$$

•
$$\cos(90^{\circ} + \theta) = -\sin\theta$$

•
$$\cos(180^\circ - \theta) = -\cos\theta$$

•
$$\tan(90^\circ - \theta) = \frac{1}{\tan \theta}$$

•
$$\tan(90^\circ + \theta) = -\frac{1}{\tan \theta}$$

•
$$\tan(180^{\circ} - \theta) = -\tan\theta$$

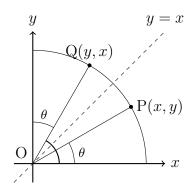
$$(0^{\circ} < \theta < 90^{\circ})$$

$$(0^{\circ} \le \theta \le 90^{\circ})$$

$$(0^{\circ} \le \theta \le 180^{\circ})$$

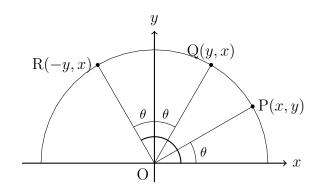
証明. (i)

 θ に対応する点を P(x,y) とし, $90^{\circ} - \theta$ に対応する点を Q とすると,P,Q は,直線 y=x について対称である.よって,P の x 座標と,Q の y 座標は等しく,P の y 座標と,Q の x 座標は等しい.よって求める等式を得る.



(ii)

 θ に対応する点を P(x,y) とし、 $90^{\circ} + \theta$ に対応する点を R とする と、点 R は、(i) でとった点 Q と y 軸に関して対称である. よって、P の x 座標と、R の y 座標は等しく、P の y 座標の -1 倍と、R の x 座標は等しい. よって求める等式を得る.



(iii)

 θ に対応する点を P(x,y) とし、 $180^{\circ} - \theta$ に対応する点を S とする と、点 S は、点 P と y 軸に関して対称である. よって、P の x 座標の -1 倍と、S の x 座標は等しく、P の y 座標と、S の y 座標は等しい. よって求める等式を得る.

