

数列の極限($\varepsilon-N$ 論法)はさみうちの原理

無限数列 a_1, a_2, \cdots を, $\{a_n\}_{n=1}^{\infty}$ や,単に $\{a_n\}$ と表す.数列 $\{a_n\}$ の極限値は,次のように定義されるのであった.

定義. 数列 $\{a_n\}_{n=1}^{\infty}$ において、任意の正数 ε に対して、ある自然数 N が存在して、

$$n > N$$
 である全ての n に対して, $|a_n - \alpha| < \varepsilon$ (1)

が成り立つとき、 α を数列 $\{a_n\}$ の極限値といい、 $\alpha = \lim_{n \to \infty} a_n$ と表す.またこのとき、数列 $\{a_n\}$ は、 α に収束するともいう.

この定義に基づいて、よく知られた極限の性質を証明していく1.

命題. ある実数 α , β に対して, $\lim_{n\to\infty}a_n=\alpha$, $\lim_{n\to\infty}b_n=\beta$ であるとき,次が成り立つ.

- 全てのnに対して, $a_n \leq b_n \implies \alpha \leq \beta$.
- 全てのnに対して, $a_n < b_n \implies \alpha < \beta$.

証明. 1つの目の主張が成り立つと仮定すると、2つ目の主張が従う. なぜならは、2つ目の主張の仮定を満たしていれば、1つ目の主張の仮定をみたすからである. すなわち、

全てのnに対して, $a_n < b_n$ 全てのnに対して, $a_n \le b_n$

が成り立つからである.よって、1つ目の主張を示せば十分である.

背理法で証明する. $\alpha>\beta$ を仮定し, $\varepsilon=\frac{\alpha-\beta}{2}>0$ とする. 仮定から, この ε に対して,

$$n > N_1 \Longrightarrow |a_n - \alpha| < \varepsilon, \qquad n > N_2 \Longrightarrow |b_n - \beta| < \varepsilon$$

をみたす N_1, N_2 が存在する. $N = \max\{N_1, N_2\}^2$ とすると, n > N である全ての自然数 n に対して, $n > N_1$ かつ $n > N_2$ が成り立つので,

$$\alpha - a_n \le |a_n - \alpha| < \varepsilon = \frac{\alpha - \beta}{2}$$
 から, $a_n > \alpha - \frac{\alpha - \beta}{2} = \frac{\alpha + \beta}{2}$, $b_n - \beta \le |b_n - \beta| < \varepsilon = \frac{\alpha - \beta}{2}$ から, $b_n < \frac{\alpha - \beta}{2} + \beta = \frac{\alpha + \beta}{2}$

が成り立つ. これらを合わせて,

$$b_n < \frac{\alpha + \beta}{2} < a_n$$

を得るが,これは仮定に矛盾である.

注意. 上の命題の 2 つの主張の結論は、 $\lceil \alpha < \beta \rceil$ ではないことに注意する. 実際、次の例のように「全ての n に対して、 $a_n < b_n$ 」であっても、 $\lceil \alpha = \beta \rceil$ となることがあり得るのである.

例. 自然数 n に対して, 2 つの数列を $a_n = \frac{2}{n}$, $b_n = \frac{3}{n}$ と定めると, $b_n - a_n = \frac{1}{n} > 0$ なので,全ての n に対して, $a_n < b_n$ であるが,極限値はどちらも 0 なので, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ である.

¹高校数学での曖昧な数列の極限の定義では、厳密に証明することができなかった性質たちである.

 $^{{}^{2}}N_{1}$ と N_{2} の大きい方を N とする.

はさみうちの原理・

定理. ある実数 α に対して, $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\alpha$ が成り立つとする.このとき,

全ての
$$n$$
 に対して, $a_n \leq c_n \leq b_n \implies \lim_{n \to \infty} c_n = \alpha$

が成り立つ.

証明. 仮定から、任意の ε に対して、

$$n > N_1 \Longrightarrow |a_n - \alpha| < \varepsilon, \qquad n > N_2 \Longrightarrow |b_n - \alpha| < \varepsilon$$

をみたす N_1, N_2 が存在する. $N = \max\{N_1, N_2\}$ とすると, n > N である全ての自然数 n に対して, $n > N_1$ かつ $n > N_2$ が成り立つので, $(a_n \le c_n \le b_n$ であることに注意すると.) このとき, $c_n - \alpha$ は, 次のように評価できる.

$$-\varepsilon < a_n - \alpha \le c_n - \alpha \le b_n - \alpha < \varepsilon.$$

よって, n > N である全ての自然数 n に対して,

$$|c_n - \alpha| < \varepsilon$$

が成り立つ. よって主張が示された.

最後に、数列が発散する場合3の命題を証明する.この事実は直感的にも明らかであろう.

命題. 次が成り立つ.

- $\lim_{n\to\infty}a_n=\infty$ かつ、全てのn に対して $a_n\leq b_n$ \Longrightarrow $\lim_{n\to\infty}b_n=\infty$
- $\lim_{n\to\infty}b_n=-\infty$ かつ、全ての n に対して $a_n\leq b_n$ \Longrightarrow $\lim_{n\to\infty}a_n=-\infty$

証明. 1つ目の主張を証明する. 仮定から、任意の K>0 に対して、 $n>N \Longrightarrow a_n>K$ をみたす自然数 N が存在する. よって、n>N である全ての自然数 n に対して、

$$b_n \ge a_n > K$$

が成り立つ. 2つ目の主張も同様に示すことができる.

3発散する場合の厳密な定義

定義. 数列 $\{a_n\}_{n=1}^{\infty}$ において,

• 任意の実数 K > 0 に対して、ある自然数 N が存在して、

$$n > N$$
 である全ての n に対して, $a_n > K$ (2)

が成り立つとき、数列 $\{a_n\}$ は正の無限大に発散するといい、 $\lim_{n\to\infty}a_n=\infty$ と表す.

• 任意の実数 K < 0 に対して、ある自然数 N が存在して、

$$n > N$$
 である全ての n に対して, $a_n < K$ (3)

が成り立つとき、数列 $\{a_n\}$ は負の無限大に発散するといい、 $\lim a_n = -\infty$ と表す.

• 収束せず、正の無限大にも、負の無限大にも発散しないとき、数列 $\{a_n\}$ は振動するという.