

対数不等式

定義. $a > 0, a \neq 1$ とする. 対数関数 $\log_a x$ を含む不等式を対数不等式という.

対数不等式の解法において,基本となるのは,次の命題である.

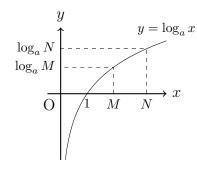
命題. $a > 0, a \neq 1, M > 0, N > 0$ とする. このとき, 次が成り立つ.

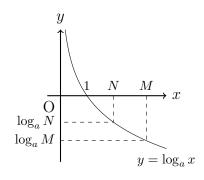
$$a > 1$$
 なら , $\log_a M < \log_a N$ \iff $M < N$

$$0 < a < 1$$
なら , $\log_a M < \log_a N$ \iff $M > N$

証明. 対数関数のグラフを思い出す. a>1 のときは, $y=\log_a x$ のグラフの単調増加性 (左下図) から, また, 0<a<1 のときは, $y=\log_a x$ のグラフの単調減少性 (右下図) から, 主張が従う.

a > 1 のとき,





対数方程式の場合と同様に,対数不等式においても真数条件¹に注意しなければならない. よく似た4つの不等式

(1).
$$\log_2(x^2 + x - 2) > 2$$

(3).
$$\log_2(x-1) + \log_2(x+2) > 2$$

(2).
$$\log_2(x^2 + x - 2) < 2$$

(4).
$$\log_2(x-1) + \log_2(x+2) < 2$$

を考えよう.まず、全ての不等式の真数条件を確認しておく.

- 不等式 (1),(2) の真数条件は, $x^2+x-2>0 \Leftrightarrow (x-1)(x+2)>0 \Leftrightarrow x<-2,1< x$
- 不等式 (3), (4) の真数条件は, x-1>0 かつ $x+2>0 \Leftrightarrow x>1$

である.また全ての不等式の右辺は, $2=2\log_22=\log_22^2=\log_24$ と計算でき,底 2 は,1 より大きいことに注意すると,これらの不等式は,上で計算した真数条件のもとで 2 ,

(1).
$$\log_2(x^2 + x - 2) > \log_2 4 \iff x^2 + x - 2 > 4 \iff x^2 + x - 6 > 0 \iff x < -3, 2 < x$$

(2).
$$\log_2(x^2 + x - 2) < \log_2 4 \iff x^2 + x - 2 < 4 \iff x^2 + x - 6 < 0 \iff -3 < x < 2$$

(3).
$$\log_2(x-1) + \log_2(x+2) > \log_2 4 \iff \log_2(x^2+x-2) > \log_2 4 \Leftrightarrow \cdots \Leftrightarrow x < -3, 2 < x$$

(4).
$$\log_2(x-1) + \log_2(x+2) < \log_2 4 \iff \log_2(x^2+x-2) < \log_2 4 \Leftrightarrow \cdots \Leftrightarrow -3 < x < 2$$
 と計算できる.最後にそれぞれの真数条件との連立不等式を解くことで,次のように解を得る.

(1).
$$x < -3, 2 < x$$
 (2). $-3 < x < -2, 1 < x < 2$ (3). $2 < x$ (4). $1 < x < 2$

補足. (1) の解は,真数条件に関係していないように見える.これは真数条件の範囲に,解の範囲が含まれているからである.(1) の同値変形の途中に現れた不等式 $x^2+x-2>4$ を見ると,4>0 なので,この不等式を満たす解は,真数条件 $x^2+x-2>0$ も満たすことがわかる.

 $^{^{1}}$ 対数 $\log_a M$ の真数 M は,その定義から必ず正の数であるという条件.

²すぐ後の同値変形は、それぞれの真数条件のもとで同値であるということに注意する. (これが重要!)