

上限定理

実数全体の集合,自然数全体の集合をそれぞれ, \mathbb{R} , \mathbb{N} と表す。実数の完備性 1 とアルキメデスの公理 2 を仮定して,次の上限定理 3 を証明する.

定理 (上限定理). ℝの空でない部分集合が、上に有界ならば、上限が存在する.

証明. $X \neq \emptyset$ を \mathbb{R} の上に有界な部分集合とする. X の上界全体の集合を U とすると、仮定から $U \neq \emptyset$ である. $a_1 \in X, b_1 \in U$ をとり、

$$c_1 = \frac{a_1 + b_1}{2}$$

とおく. さらに, この c_1 がU に属するか否かで, a_2, b_2 を次のように定める.

$$\begin{cases} a_2 = a_1 & , & b_2 = c_1 & (c_1 \in U) \\ a_2 = c_1 & , & b_2 = b_1 & (c_1 \notin U) \end{cases}$$

以下, 帰納的にして2つの数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ を定めると,

$$a_1 \le a_2 \le \dots \le a_n < b_n \le \dots \le b_2 \le b_1 \tag{1}$$

が成り立つ.

このように定義した数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ が、Cauchy 列であり同じ値に収束することを示す。任意に $\varepsilon>0$ を固定する。アルキメデスの公理から、 b_1-a_1 、 ε に対して、 $N\in\mathbb{N}$ であって、 $b_1-a_1< N\varepsilon$ を満たすものが存在する。また一般に、 $N\leq 2^{N-1}$ が成り立つので、これと合わせて、

$$b_1 - a_1 < 2^{N-1}\varepsilon \tag{2}$$

が成り立つ.一方,(1)と c_i $(i=1,2,\cdots)$ の定め方から,m,n>N である $m,n\in\mathbb{N}$ に対して,

$$|a_m - a_n| \le b_N - a_N = \frac{b_1 - a_1}{2^{N-1}} \tag{3}$$

が成り立ち,これと(2)を合わせて,

$$|a_m - a_n| < \varepsilon$$

が成り立つ. よって、 $\{a_n\}_{n=1}^\infty$ は、Cauchy 列であり、同様に考えて、 $\{b_n\}_{n=1}^\infty$ も、Cauchy 列である. よって、実数の完備性から、これらは収束する. さらに (3) 式において、 $N\to\infty$ を考えることにより、 $\lim_{n\to\infty}(b_n-a_n)=0$ が従う. よって、これらが収束することと合わせて、 $\{a_n\}_{n=1}^\infty$ と $\{b_n\}_{n=1}^\infty$ の極限値は等しいことがわかる. そこでこれを α とする. すなわち

$$\alpha = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

とおく.

 $^{^1}$ 実数列が収束するための必要十分条件は、Cauchy 列であることである。ここで、数列 $\{a_n\}_{n=1}^\infty$ が Cauchy 列であるとは、任意の $\varepsilon>0$ に対して、ある $N\in\mathbb{N}$ が存在して、 $m,n\geq N\Longrightarrow |a_m-a_n|<\varepsilon$ が成り立つときをいう。

²任意の正の実数 a,b に対して,b < Na をみたす $N \in \mathbb{N}$ が存在する.

³上限定理とは、すなわち実数の連続性公理のことである.

 b_n の定め方から、全ての $n \in \mathbb{N}$ に対して、 $b_n \in U$ が成り立つので、 $n \to \infty$ を考えることで、任意の $x \in X$ に対して、

$$x < \alpha$$

が成り立つ. よって,

 $\alpha \in U$

である. また, $\lim_{n\to\infty} a_n = \alpha$ から, 任意の $\varepsilon > 0$ に対して, $n \in \mathbb{N}$ であって,

$$\alpha - \varepsilon < a_n < \alpha$$

を満たすものが存在するが、 a_n の定め方から、全ての $n \in \mathbb{N}$ に対して、 $a_n \notin U$ であるから、 $\alpha - \varepsilon \notin U$ が成り立つ.よって、 $\alpha \in U$ は、U の最小値なので、X の上限である.

系. ℝの空でない部分集合が、下に有界ならば、下限が存在する.

証明. $Y \neq \emptyset$ を \mathbb{R} の下に有界な部分集合とする. Y の下界全体の集合を L とすると, 仮定から, $L \neq \emptyset$ である. 定義から, 任意の $y \in Y$, $l \in L$ に対して,

 $y \ge l$

が成り立つ. \mathbb{R} の部分集合 X,U を

$$X = \{-y \mid y \in Y\}, \qquad U = \{-l \mid l \in L\}$$

と定めると、任意の $x \in X$, $u \in U$ に対して、 $-x \in Y$, $-u \in L$ なので、

$$-x \ge -u \iff x \le u$$

が成り立つので、X は上に有界である.よって,上限定理から X の上限 α が存在する.定義から, α は U の最小値なので, $-\alpha$ は,L の最大値である.よって,これが Y の下限となり主張が従う.